. AD=AD33 488  MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF ELECTRI==ETC F/6 9/%
GAIN AND PHASE MARGIN FOR MULTILOOP L06 REGULATORS., (L)

DEC 76 M 6 SAFONOV» M ATHANS AF=AFOSR=2273=72

UNCLASSIFIED AFOSR=TR=76=12358 NL
ol END

! A033488 DATE
_FILMED
. 7P




ADAO033488

]

AFOSR - TR- 76 - 128

\§\ Abstract

Multi-loop linear-quadratic state-feedback
(LQSF) regulators are shown to be robust against a
variety of large dynamical, time-varying, and non-
linear variations in open-loop dynamics. The
results are interpreted in terms of the classical
concepts of gain and phase margin, thus strength-
ening the link between classical and modern feed-
back theory.

I. Introduction

Historically, feedback has been used in con-
trol system engineering as a means for satisfying
design constraints requiring

1) stabilization of insufficiently stable
systems,

2) reduction of system response to noise,

3) realization of a specific input/output
relation (e.g., specified poles and
zeroes), or

4) improvement of & system's robustness
against variations in its open-loop
dynamics.

Classical fecdback synthesis techniques include
procedures which ensure directly that each of
these design constraints is satisfied [1) and [2].
Unfortunately, the direct methods of classical
feedback thcory become overwhelmingly complicated
for all but the simplest feedback configurations.
In particular, the classical theory cannot cope
simply and effectively with multiloop feedback.
Linear-Quadratic-Gaussian (1QG) control

theory has made relatively simple the solution of
many multiloop control synthesis problems. The
1QG technique (3] provides a straightforward means
for synthesizing stable linear feedback systcms
which are insensitive to Gaussian white noise.
Variations of the LQG technique have also been
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NGL-22-009-124 and by AFOSR under grant 72-2273
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devised for the synthesis of feedback systems
with specified poles (4, pp. 77-87], (5], (6).
Thus, the LQG technique is a valuable design aid
for satisfying the first three of the aforemen-
tioned design constraints.

The results which follow show how the multi-
variable LQG design can satisfy constraints of
the fourth type, i.e. constraints requiring a
system to be robust against variations in open
loop dynamics. The Linear-Quadratic-State-
Feedback regulator, which we refer to as the
LQSF regulator, is considered. The robustness of
IQSF regulator designs against varjiations in open-
loop dynamics is measured in terms of multiloop
generalizations of the classical notions of gain
and phase margin. It is shown that IQSF multi-
variable designs have the property of an infini%e
gain margin and +60° phase margin for each con-
trol channel.

Such robustn.ss results may appear incorrect
at first glance, especially to control engineers
familiar with classical servomechanism design.

It should be noted that in classical servomech-
anism design the dimension of the compensators
uscd (e.g., lead-lag networks) generally leads to
large phase lags at high frequencies, so that one
may never have the infinite gain margin property.
However, it should be stressed that when one uses
full state-variable feedback one, in effect, in-
troduces a multitude of zeroes in the compensator;
it is this abundance of zeroes together with the
Linear-Quadratic optimal design procedure that
results in the surprising robustness properties
of LQSF designs.

In order to provide a more detailed and
rgalistic bridge between the classical and modern
approaches, especially with respect to robustness
issues, one has to examine the case in which not
all state variables arc available for feedback.
In the modern control approach, one would then
have to use a state reconstructor (Luenberger
observer or constant gain Kalman filter). The
overall robustness properties of such designs are
not entirely settled as yet; they will be
addressed in a future publication. Also there are
interesting and as yet unresolved issues of the
robustness properties of output (or limited-state)
variable feedback designs using quadratic per-
formance criteria (31).

Exploiting the mathematical duality between
Kalman filters and Linear-Quadratic optimal feed-
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back controllers, the authors have shown that the features in common with the results which are pre~
robustnoss results of thin paper lead to conditions sented here.
for the non-divorgence of the eostimates gencrated
. by nonlinear filters of the type considerod by Cil- ITI. pefinitions and Notation
#' man and Rhodes ([33); theuo Jdual results will be
the topic of a future publication. 1In contrast The following conventions of notation and ter-
to the results presented here, the dual nonlinear minology are used:

filtering n-u.lu require the avatlability of Aan () . (x ) denotes the transpose of the
exact description of the system under considera- Batrii A (the vector x) .

tion and hence have no comparable robustness inter-

pretation. It can be shown that substituting the (14) A* denotes the adjoint of the matrix
non-divergent state-estimate from this type of A (i.e., the complex-conjugate of AT).
filter for the true state in a nonlinear state-
feedback regulator will not destabilize the

T

(111) We say that the function x:(0, ®) =+ "

closed-loop system. s is square-integrable if
]
IL. Previous Work f xT(t) x(t) at < =.
0
The fundamental work on the robustness of P ¢
feedback systems is due to Dode {1, pp. 451-88). (1v) The term operator is !elen.nd RELTIED
Employing the Nyquist stability criterion, Bode tions which map functions into func-

tions. For example, a dynamical system
may be viewed as an operator mapping
input time-functions into output time-

showed how the notions of gain and phase margin
can be explcoited to arrive at a simple and useful
means for characterizing the classes of variations

in open-loop dynamics which will not destabilize functions.

single-input feedback systems. The engineering (v) We say that an operator N with N 0=0
implications of Bode's results are further deovel- has finite gain if there exists a
oped by Horowitz (2]. Although the Nyquist cri- constant k < « guch that

terion has been extended to multiloop feedback o

systems (7] and (8], there has as yet been only T

limited success in exploiting the multiloop version f [N ()] [N w(t))ae

in the analysis of multiloop feedback system ro- °
bustness [9]-([14]. % kf-
Regarding the robustness properties specific o
to LOSF regulators, perhaps the most significant
results is due to Anderson and Moure (4, pp. 70- for all square-integrable u.
76). Exploiting the fact that single-input LQSF
regulators have a return-difference grester than (vi) We say that an operator mapping input
time~functions into output time-func-
unity at all frequencies ([15), thesc authors show
that single-input LQSF regqulator designs have $60° tions is non-anticipative if the value
2 ? assumed by the output function at any
phase margin, infinite gain margin, and 508 gain
reduction tolerance. It has also been shown that time t, depends only on the v‘:“" of
the gain properties extend to memoryless nonlinear the input-function at times t 2 tt)'
gains of the type shown in Figure 1 [16) and (4, (vii) If a function x:(0, =) =+ . has the
PP. 96-98]).* Kelated results by Barnett and property that
Storey (18] and Wong (19], (35] parameterize a
class of linear, constant perturbations in feed-

wT(tu(e) at

e ——

Um x(¢t) =0

back gain which will not destabilize a multi-loop s _

2 LQSF regulator. A generalization of the latter then we say that x is asympotically
result to multiloop nonlinearities in optimal non- stable. A system of ordinary differen-
lincar state-feedback regulators with a quadratic tial equations is asymptotically stable
performance index is incorrectly attributed to [16]) if every solution is asymptotically
by [20]. 1Insofar as the generalization stated in stable.

[20) applies to LQSF regqulators, it is essentially
equivalent to theorem 1 of this paper.

Various other results have been produced which
are more or less indirectly related to the ques-
tion considered here. Issues related to the in-
verse problem of optimal control, i.e. the charac-
terization of the properties of optimal systems,
are considered by [15), and (20])-[24]). The ques-
tion of sensitivity in LQSF requlators is con-~
sidered by (10), (15), and (25)-(28). The stabil-
ity conditions of Zamos (29) and (30) involving
loop gain, conicity, and positivity have many

o (viii) If (S) denotes the system x(t) = (Fx) (t)
where F 0 =0, we say that the pair
[H, S) “is detectable if, for each
x:(0, =) + RD satisfying (S) with x not
;qmre-inteqrnble, H x is also not
square-integrable. The significance of
detectability is most apparent if we
consider x(t) as a description of the
internal dynamics of some physical
system and (H x) (t) as the observed
output. Viewed in this manner, detect-
ability means essentially that unstable
behavior in the system's internal dy-
namics always results in an output
which is unstakle. For example, if H
is a non-singular square matrix, then ; '

|

* This result is attributed by Anderson [16) to
Sage (17).
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[H, S) will be detectable.

(ix) We say that an operator mapping time-
functions into time-functions is
memoryloss if the value assumed by its
output function at any instant to de-
pends only upon ty and the instantan-
eous value of the input function at
time tg.

(x) A>0 (A>0) is used to indicate that
the matrix A is positive definite (semi-
definite).

(xi) We say that a rational transfer func-
tion P(s) is proper if P(s) has at
least as many poles as zeroes.

IV. Problem Formulation

The Linear-Quadratic-State-Feedback (LQSF)
regulator problem can be formulated as follows

®in J(x, u)
u

subject to
R(t) = A x(t) + B u(t) ; x(0) = x; (4.1
x(t) € R®, uw) ¢ B, ARV

4

B € i
where the performance index J(x, u) is given by

-
J(x, w) -] (5T(t) Q x(¢)
0

+ gT(L) R u(t)lde 14.2)
=920 R=K >0

The optimal control u*(t) and the associated opti-
mal state-trajectory x*(t) are given by

ut(t) = -H x*(t) = -R 1B'K x*(t)

X*(t) = A x*(t) + B ut(t); x*(0) = x, ( ,)

where K = 5_7 2 0 satisiies the Riccati equation

T

0=kA+Ak-kBRBK+Q. (4.3

1>

The minimal value of the performance index is

Jxr, wh) = x K (4.9

Eo.

The class of systems considered here are per-
turbed versions of (2 ) satisfying
RO v AR + BN D),

X(0) = x, (Z)
ute) = =N x(t)

where A, B, %), and H are the same as in (}°).

We assume that ! is a finite gain, non-anticipa-
tive operator with N 0 = 0 (see Figure 2).*

V. Results

The two theorems which foll quantitatively
characterize the tolerance of () ) to perturba-
tions N. It is noted that the significance of
these results is not restricted to systems with
perturbations originating only at the point shown
in Figure 2. Rather, it is only necessary that
the system under consideration have open-loop
input/output behavior which is the same as the
open-loop behavior of (2) . Both of the theorems
which follow have interpretations in terms of
generalizations of the classical notions of gain
and phase margin. The proofs are given in Appen-
dix A.

Theorem l--(LOSF Multiloop Nonlinear Gain
Tolerance)

Let the perturbation N of (2) be a memoryless,
time-varying non-linearity,

N w) (t)= £lu(t), t). (5.1)

If there exists a constant B > 0 and a constant
k < * guch that

X : J

le
e
Iv

grety, 0 2 BT s

for all u CR- and all t € (0, =), then
J(x*,u*) 1I (x (v)Q x(t)
(+]

+B3(t) Rale))at (5.3)

and if, additionally, 192, I) is detectable then
(Z) is asymptotically stable.O

Theorem 2--(LQSF Multiloop Gain and Phase
Margin)

Let the perturbation N of (}°) be a finite
gain, linear, timc-invariant operator L with
rational transfer function matrix L(s). If for
all w

LR + R gy - r7?

20 (5.4)

and if 19172, f) is detectable, then (}) is
asymptotically stable.O

The results of Theorems 1 and 2 apply only in
sjtuations where the perturbation [‘ is either
memoryless or linear-time-invariant. While this
covers many interesting situations, these are not
the most general results possible. In Appendix B
it is shown that the stability conditions of
theorems 1 and 2 are actually special cases of a
more abstract result concerning the input/output
stability of a class of systems including (f) as
a special case.

¥ The condition N 0 = O is not restrictive since
we can always consider the "DC" or steady-state
effects separately as is common engineering
practice.
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VI. Discussion

Theorems 1 and 2 characterize a wide class of
variations in open-loop dynamics which can be tol-
erated by LSQF regulator designs. To appreciato
the significar e of these results and, in particu-
lar, their relation to classical gain and phase
margin, it is instructive to consider the special
case depicted in Figure 3 in which

> 9 (6.1)

0 i
r1 o

0 |r2 van 1Q
Rs= duq(zl,...,r-)i ,(6.2)

V] 0 ... 1S

and the perturbation N satisfies

%Y

! u-= . (6.3)
u
~m m

80 that the perturbations in the various feedback
loops are non-interacting.

In this case theorem 1 specializes to the
following:

Corollary 3: If the perturbed system (2)
satisfies (6.1), (6.2), and (6.3) and each of the
perturbations J, is memoryless with (Ql‘u’.) (t)

S f4(uj(t), t) and for some k < 0, some B8 2 0 and
all t ¢ (0, ™)

!‘(O,t) =0 (6.4a)

x2tewe 28t forannuro  (e.am

(see Figure 1), then (}7) is asymptotically stable
and (5.3) holds. O

Proof: This follows immediately from
theorem 1. ()

It we consider the case in which the N,'s of
the system in Figure 3 are linecar time-invariant
operatorsu, then theorem 2 becomes:

Corollary 4: If the perturbed system (2)
satisfies (6.1), (6.2), and (6.3) and if each of
the perturbations N, is linear and time-invariant
with proper rationat transfer function P, (s),
Re(s4) < 0 for each pole s, of P;(g), a
Rc(l’i(jw)lz. 1/2 for all w, then ()') is asymptoti-
cally stable.O

Proof: The condition Re[sj] < O assures that
N has finite gain. Taking L(s) = diag(Py(s)), the
result follows immediately from theorem 2.0

. From corollary 3, it is clear that the suffi-
cient condition for stability

Lew >t (6.5)

proved in (4, pp. 96-98) and (16] for single-input
LQSF recgulators, generalizes to multiloop systems

AR NS e . ey

when R = diag(r),...,ry).
From corollary 4, the following two results
follow directly:

Corollary %: (LQSF t60° Multiloop Phase
Margin): If Q and R satisty (6.1) and (6.2), thon
a phase shift §; with |¢;| < 60° in the respective
feedback loops of each of the controls u; will
leave an IQSF regulator asymptotically stable. O

e)ﬁ w) ¢

Proof: Take P‘(jw) = From corollary

4, we require cos ¢, (w) ll or |¢. (w)|< co-'1(1/2)
= 60°.0 . ‘ ~

Corollary 6: (Multiloop LQSF Infinite Gain
Margin and 508 Gain Reduction Tolerance): If Q
and R satisfy (6.1) and (6.2), then the insertion

of linear constant gains a :% into the feedback

loops of the respective controls u, will leave an
IQSF regulator asymptotically stable. O*

Proof: Follows trivially from corollary 4.0

Corollaries 5 and 6 are obvious multiloop
generalizations of the previously established
result [4, pp. 70-76] that single-input LQSF regu-
lators have infinite gain margin,+60° phase mar-
gin, and 50% gain reduction tolerance.

VII. Conclusions

Results have been generated which quantita-
tively characterize a wide class of variations in
open-loop dynamics which will not destabilize
IQSF regulators. A $60° phase margin property of
LQSF regulators has been established for multiloop
systems (corollary 5). The class of nondestabili-
zing linear fecdback perturbations for multiloop
IQSF regulators has been extended to include
dynamical, transfar-function perturbations
{theorem 2). A nonlinearity tolerance property
for IQSF regulators has been proved (theorem 1l).
An upper bound on the performance index change
in a perturbed LQSF system has been established
(Eq. (5.3) in theorem 1 and corollary 3). The
latter result can be interpreted as a measure of
the stability of a perturbed LQSF requlator in
comparison with the unperturbed regulator. The
process of generating these results has brought
pertincent previous results (4, pp. 70-76, 96-98],
(16]), (18)-(20) together under a unified theoreti-
cal framework.

The results presented show that modern multi-
loop IQSF regulators have excellent robustness
properties as measured by the classical criteria
of gain and phase margin, thus strengthening the
link between modern and classica:l feedback theory.
Additionally, these results show that multiloop
LQSF regulator designs can tolerate a good deal
of nonlinearity. The quantitative nature of the
results suggests that they may be useful in the
synthesis of robust controllers.

Although the results presented all specify
that the tolerable perturbations be measured with
respect to a perfect state-measurement LQSF
system, it is apparent that statements may also
be made about the general LQG regulator if the

*Corollary 6 is a special case of a result proved
by Wong {19), (3s).
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effect of the Kalman filter on the system’s open-
loop dynamics is viewed as a component of the per-
turbation N.

Am‘ﬂhd ix A

Proofs of Theoroma 1 and 2

We begin by introducing the following nota-
tion to facilitate the proofs:

(1) The inner-product space LG(o, w) is defined

by

LGlov ®) = (£I£= o, .)"nn'

o«
I x(8) x(t)de < =) (A.1a)
(4]

<x, y> = fg’(e) git)at (A.1b)

(11) "rht extension L
defined by

n
2e

[o ®) of 1.2 (0, =) is

L 0, ®) = (_X_I!_‘ (o, .)’Rno

1
L xT(t)x(t)dt < = for all 1} (A.20)

‘<£,1> if the integral (A.1lb)
<x,y>. - ! converges

" ® otherwise
(A.2b)

(i14) The linear truncation operator

Prilyg (0, =) + L,"(0, ) is defined by

x(t) ift € (0, 1)
(P, 0 = (a.3)
o otherwise

For brevity of notation we denote P,t_x_ by p

The key result in the proofs of theorems 1
and 2 is the following:

Theorem A.1: If the perturbation N of (Z)
is such that for some 8 > 0

<u, (N-(1+8 DR g_> 20 (A.4)
for all w € L,"(0, =), then (1)
!°T£5°><§,g;>¢ﬂ<§,n\-a> (A.5)

where x, u are the solution of (Z), and (u) if,

sdditionally, 19'/2, f) is detectable, then X is

asympotically lublc and square-integrable.O

Proof: r K the solution of (4.3) and x the
solution of ( with x(0) = 50. we have that for
every T € (0,

T ~T
LY 3R

=
1%

T
0 -f -G ek xie)ae
(]

-k a-aNE

>

(-2¢K X, OE

>-2<%,kn-bNrK) % >
2 E.RIE<BNERBE x

i 1.7 5
*<x., (KB2N=-DR BK+ Qx> (A.6)

Using (A.4) and the fact that U= =R 'B'K x, we
have

BK R - <R QR -8, RS
- -1 7T -
2<% ,KB (2 N - 1+8) DR BK x>
T - 1T o
= <BK X, (2N - (148 BKX>
> 0. (A.7)

Rearranging and taking the limit T + @, (A.S)
follows. Now, suppose for the purpose of nr nt
that x is not square-integrable. Since [2 1l

is detectable, this means <Q /2 o 21/2;.‘) in-

creases without bound as T increases, contradict-
ing (A.5). Therefore, X is square-integrable. By
hypothesis N and hence A - B N R™187K have finite
gain. ‘l'hua, x = A-BNR 15 K)X is also
square-integrable. Since both .l and X are square-
integrable, it follows (cf. (32, PP 235- -237])
that x is asymptotically stable.O

Proof of Theorem 1: Equation (5.2) ensures
that (A.4) is satistioi Since, for memoryless

N, X is the state of () ) and since the initial
time t = 0 is not dist guuhed, the asymptotic
stability of ( is assured if X is asymptotically
stable for every initial state X(0) = x_ . Theorem
1 follows from (4.4) and theorem A.l.0Q

Proof of Theorem 2: Fram (5.4) and Parseval's
theorem it follows that, for every u € L2 [0, =)

<w 2N-prlw ey, @L-pElw

r Us (3w) (L()N)R

- n'l)g(jw)w >0 (A.8)

L' (Jw) -

where U(jw) is the Fourier transform of u. Thus
(A.4) Is satisfied with B = 0. Since [’ 01/2, 7)
is detectable, thcorem A.l implies that X il
asymptotically stable, regardless of the value of
%5. It follows that the  weighting pattern W(t)
(#.e., the response of (D to an impulse I,68(t)
where 8(t) is the Dirac delta function) 1. asymp-
totically stable.

From standard results on linear systems
we have

(1) Ws) = (1s + A-BLORBKTY (9
where W(s) is the Laplace transform of W(t),

st
TR TG g (et (A.10)
lt( C(w)

(t) are non-zero matrices of polynomials
Lu t .;3 C(W) is the set of characteristic fre-
quencies of W(t), and




i g

&

o

(141) P(W) - 2(W) C C(W) C P(W) (A.1l1a)
where
(W) = (l‘ldot(_w_(s‘)) = 0} (A.11b)

P(W) * -1 o
(W) (stm.:uy.‘m o} : . X3

(We call Z(W) and P(W) respectively the zeroes and
the poles of W(s).) Since W(t) is square~
integrable,

Re(s;] <0 for all s € C(w) . (A.12)

The dynamics of (2) are described (not nec-
essarily minimally) by the differential equations

Is-a .

Ixe

-0 (A.13)

e

La(s) R 35 Ly(s)

where g = d—-, L.“(s) and l. (s) -ro polynomial

dt
matrices satisfying E_(s) - ED (s), and the
roots of dct(go(n)l are the poles of L(s). For
(g to be asymptotically stable, we require that
the roots of the characteristic polynomial p(s)
associated with (A.13) all have negative real
parts. Using a well-known matrix identity, we
have from (A.9) and (A.13)

Is -~ A -B

TT N S )

p(s) det

1"

= det(L (s)]-det(Is - A + B L(s)R 'B'K
det (L, (s}}
* St (A.14)
and therefore
det (L _(s))
det (W(s)] ~ b (A.15)
i pis)

From (A.11) and (A.15) it follows that, except for
those roots of p(s) which cancel with the roots of
the polynomial det[L (s)], all roots of the charac-
teristic polynomial p(s) are contained in C(W).
Since L has finite gain, it follows that all the
roots of det(l;,(s)] have negative real parts. Thus
any cancellations in (A.15) can involve only roots
with negative recal parts. From (A.12) we conclude
that all the roots of the characteristic polynomial
p(s) have negative real parts and, hence, ( ) ) is
asymptotically stable.O

Appendix B

Input-Output Stability of LOSF Regulators

In this appendix, it is shown that if we
restrict our attention to the case in which the
state weighting matrix Q is positive definite, it
is possible to render a very compact proof that
the conditions of theorems 1 and 2 are sufficient
to cnsurc the lnpul/gtput stability of the per-

turbed LOSF system () ).
The preof which follows is based on the
positivity theorem of Zames (29), to which the

AT A BT 4 o S ———

reader is raferred for additional details and
further explanation of the notation and termino-
logy. The ideas of (29) are further developed in
{32}, (34]1. The strategy used in this proof in-
volves showing that the stabi{lity conditions of
theorems 1 and 2 follow as immediate corollaries
to a result (Theorem B.l) concerning the input/
output stability of a class of systems including
(V") as a special case.

We consider the system

sx = Fx + Gu + £ (B.la)
u= 28K x, (8.1b)
where
Sah
Tde’

g€ Lzz(R) is an exogenous disturbance input,
Filo(R) » “z:‘“" G"‘z:‘m * L0 (R
are non-anticipative operators
with finite gain, and
Fo = 0, GO = 0.
Introducing the dummy variable w, the arbitrary

constant €, and rearranging, the dynamics of the
system (B.l) may be described oquivnlent.ly by

x = (x(s-Ae38 RBK-F0- )17 (s.20)
v--[x(A-F+(§-a G)(n T K_+
+ 3(1-:)215 +KE. (B.2b)

The following result may now be stated:
Theorem B.1l: Let the operator

kA-F+ dp-0CrERI+ 19
(B.3)

be strongly positive. Then, the relation between
the disturbance input £ and the system output x
defined by (B.2) has finite gain.

Proof: We apply the positivity theorem of
Zames (29, Theorem 3). From the Riccati equation
(4.3) and Parseval's theorem, we conclude that the
operator in brackets in (B.2a) is positive for
every € > 0. The assumption that F and G have
finite gain assures that the operator in brackets
in (B.2b) has finite gain. In view of condition
(B.3), we conclude that for € >0 sufficiently
spall, the operator in (B.2b) is also strongly
positive. The result follows from 2ames' posi-
tivity theorem.*O

To apply theorem B.l to the special case of
(2). we take F = A, and G = B N. Since 0 > 0;
a -u!tichnt condxtton for (B.3) to hold is

-3or? (B.4)

* Actually, Zames' statement of the positivity
theorem merely claims boundedness rather than
finite gain. A careful review of Zames' proof
Teveals that the stronger claim of finite gain
is justified in the present situation (cf.
(34, p. 109)).




poaitive.

It is evident that the stability condi-

tions of Theorems 1 and 2 are special cases of
condition (B.d) in which the operator N is either

. momory leas or

l10.

11.

12.

13.

14.

15.

lo.

.

ol

lincar-time=-invariant.
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